
[Saranya, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [710]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

MULTI TASKING – SOCKETS IN DATA TRANSMISSION
C.Saranya*, L.Gomathi

* Research Scholar, Department of Computer Science, Muthayammal College of Arts & Science, India
* Associate Professor, Department of Computer Science, Muthayammal College of Arts & Science, India

ABSTRACT
This Paper a new socket class which supports both TCP and UDP communication. But it provides some advantages

compared to other classes that you may find here or on some other Socket Programming papers. First of all, this

class doesn't have any limitation like the need to provide a window handle to be used. This limitation is bad if all

you want is a simple console application. So this library doesn't have such a limitation. It also provides threading

support automatically for you, which handles the socket connection and disconnection to a peer. It also features

some options not yet found in any socket classes that I have seen so far. It supports both client and server sockets. A

server socket can be referred as to a socket that can accept many connections. And a client socket is a socket that is

connected to server socket. You may still use this class to communicate between two applications without

establishing a connection. In the latter case, you will want to create two UDP server sockets (one for each

application). This class also helps reduce coding need to create chat-like applications and IPC (Inter-Process

Communication) between two or more applications (processes). Reliable communication between two peers is also

supported with TCP/IP with error handling. You may want to use the smart addressing operation to control the

destination of the data being transmitted (UDP only). TCP operation of this class deals only with communication

between two peers.

KEYWORDS: TCP, UDP, Server, Packets, Peer

 INTRODUCTION
This is about a client/server multi-threaded socket class. The thread is optional since the developer is still

responsible to decide if needs it. There are other Socket classes here and other places over the Internet but none of

them can provide feedback (event detection) to your application like this one does. It provides you with the

following events detection: connection established, connection dropped, connection failed and data reception

(including 0 byte packet).

PROBLEM DESCRIPTION

This paper presents a new socket class which supports both TCP and UDP communication. But it provides some

advantages compared to other classes that you may find here or on some other Socket Programming papers. First of

all, this class doesn't have any limitation like the need to provide a window handle to be used. This limitation is bad

if all you want is a simple console application. So this library doesn't have such a limitation. It also provides

threading support automatically for you, which handles the socket connection and disconnection to a peer. It also

features some options not yet found in any socket classes that I have seen so far. It supports both client and server

sockets. A server socket can be referred as to a socket that can accept many connections. And a client socket is a

socket that is connected to server socket. You may still use this class to communicate between two applications

without establishing a connection. In the latter case, you will want to create two UDP server sockets (one for each

application). This class also helps reduce coding need to create chat-like applications and IPC (Inter-Process

Communication) between two or more applications (processes). Reliable communication between two peers is also

supported with TCP/IP with error handling. You may want to use the smart addressing operation to control the

destination of the data being transmitted (UDP only). TCP operation of this class deals only with communication

between two peers.

http://www.ijesrt.com/

[Saranya, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [711]

EXISTING

This paper presents a new socket class which supports both TCP and UDP communication. But it provides some

advantages compared to other classes that you may find here or on some other Socket Programming papers. First of

all, this class doesn't have any limitation like the need to provide a window handle to be used. This limitation is bad

if all you want is a simple console application. So this library doesn't have such a limitation. It also provides

threading support automatically for you, which handles the socket connection and disconnection to a peer. It also

features some options not yet found in any socket classes that I have seen so far. It supports both client and server

sockets. A server socket can be referred as to a socket that can accept many connections. And a client socket is a

socket that is connected to server socket. You may still use this class to communicate between two applications

without establishing a connection.

PROPOSED

In the latter case, you will want to create two UDP server sockets (one for each application). This class also helps

reduce coding need to create chat-like applications and IPC (Inter-Process Communication) between two or more

applications (processes). Reliable communication between two peers is also supported with TCP/IP with error

handling. You may want to use the smart addressing operation to control the destination of the data being

transmitted (UDP only). TCP operation of this class deals only with communication between two peers.

ANALYSIS OF NETWORK CLIENT SERVER

 TCP/IP stack

The TCP/IP stack is shorter than the OSI one:

TCP is a connection-oriented protocol; UDP (User Datagram Protocol) is a connectionless protocol.

 IP datagram’s

The IP layer provides a connectionless and unreliable delivery system. It considers each datagram independently of

the others. Any association between datagram must be supplied by the higher layers. The IP layer supplies a

checksum that includes its own header. The header includes the source and destination addresses. The IP layer

handles routing through an Internet. It is also responsible for breaking up large datagram into smaller ones for

transmission and reassembling them at the other end.

 UDP

UDP is also connectionless and unreliable. What it adds to IP is a checksum for the contents of the datagram and

port numbers. These are used to give a client/server model - see later.

 TCP

TCP supplies logic to give a reliable connection-oriented protocol above IP. It provides a virtual circuit that two

processes can use to communicate.

 Internet addresses

In order to use a service, you must be able to find it. The Internet uses an address scheme for machines so that they

can be located. The address is a 32 bit integer which gives the IP address. This encodes a network ID and more

addressing. The network ID falls into various classes according to the size of the network address.

http://www.ijesrt.com/

[Saranya, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [712]

 Network address

Class A uses 8 bits for the network address with 24 bits left over for other addressing. Class B uses 16 bit network

addressing. Class C uses 24 bit network addressing and class D uses all 32.

 Subnet address

Internally, the UNIX network is divided into sub networks. Building 11 is currently on one sub network and uses 10-

bit addressing, allowing 1024 different hosts.

 Host address

8 bits are finally used for host addresses within our subnet. This places a limit of 256 machines that can be on the

subnet.

 Total address

The 32 bit address is usually written as 4 integers separated by dots.

 Port addresses

A service exists on a host, and is identified by its port. This is a 16 bit number. To send a message to a server, you

send it to the port for that service of the host that it is running on. This is not location transparency! Certain of these

ports are "well known".

MODULE DESIGN SPECIFICATION

part 1 - Create a server socket that listen for a client to

 connect

part 2 - send / receive data from client to server

part 3 - Read unknown size of data from client

 Create a server socket that listens for a client to connect

Associates a local address with a socket This routine is used on an unconnected datagram or stream socket, before

subsequent connects or listens. When a socket is created with socket, it exists in a name space (address family), but

it has no name assigned. bind establishes the local association (host address/port number) of the socket by assigning

a local name to an unnamed socket. In the Internet address family, a name consists of several components. For

SOCK_DGRAM and SOCK_STREAM, the name consists of three parts: a host address, the protocol number (set

implicitly to UDP or TCP, respectively), and a port number which identifies the application. If an application does

not care what address is assigned to it, it may specify an Internet address equal to INADDR_ANY, a port equal to 0,

or both. If the Internet address is equal to INADDR_ANY, any appropriate network interface will be used; this

simplifies application programming in the presence of multi- homed hosts. If the port is specified as 0, the Windows

Sockets implementation will assign a unique port to the application with a value between 1024 and 5000. The

application may use getsockname after bind to learn the address that has been assigned to it, but note that

getsockname will not necessarily fill in the Internet address until the socket is connected, since several Internet

addresses may be valid if the host is multi-homed. If no error occurs, bind returns 0. Otherwise, it returns

SOCKET_ERROR, and a specific error code may be retrieved by calling WSAGetLastError.

Establishes a socket to listen to a incoming connection To accept connections, a socket is first created with socket, a

backlog for incoming connections is specified with listen, and then the connections are accepted with accept. listen

applies only to sockets that support connections, i.e. those of type SOCK_STREAM. The socket s is put into

"passive'' mode where incoming connections are acknowledged and queued pending acceptance by the process. This

function is typically used by servers that could have more than one connection request at a time: if a connection

request arrives with the queue full, the client will receive an error with an indication of WSAECONNREFUSED.

listen attempts to continue to function rationally when there are no available descriptors. It will accept connections

http://www.ijesrt.com/

[Saranya, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [713]

until the queue is emptied. If descriptors become available, a later call to listen or accept will re-fill the queue to the

current or most recent "backlog'', if possible, and resume listening for incoming connections.

This routine extracts the first connection on the queue of pending connections on s, creates a new socket with the

same properties as s and returns a handle to the new socket. If no pending connections are present on the queue, and

the socket is not marked as non- blocking, accept blocks the caller until a connection is present. If the socket is

marked non-blocking and no pending connections are present on the queue, accept returns an error as described

below. The accepted socket may not be used to accept more connections. The original socket remains open. The

argument addr is a result parameter that is filled in with the address of the connecting entity, as known to the

communications layer. The exact format of the addr parameter is determined by the address family in which the

communication is occurring. The addrlen is a value-result parameter; it should initially contain the amount of space

pointed to by addr; on return it will contain the actual length (in bytes) of the address returned. This call is used with

connection-based socket types such as SOCK_STREAM. If addr and/or addrlen are equal to NULL, then no

information about the remote address of the accepted socket is returned. Making client connection with server In

order to create a socket that connects to an other socket uses most of the functions from the previous code with the

exception of a struct called HOSTENT

 HOSTENT:

This struct is used to tell the socket to which computer and port to connect to. These struct can appear as

LPHOSTENT, but it actually means that they are pointer to HOSTENT.

 Client key function

Most of the functions that have been used for the client to connect to the server are the same as the server with the

exception of a few. I will just go through the different functions that have been used for the client. The contents of

this structure correspond to the hostname name. The pointer which is returned points to a structure which is

allocated by the Windows Sockets implementation. The application must never attempt to modify this structure or to

free any of its components. Furthermore, only one copy of this structure is allocated per thread, and so the

application should copy any information which it needs before issuing any other Windows Sockets API calls. A

gethostbyname implementation must not resolve IP address strings passed to it. Such a request should be treated

exactly as if an unknown host name were passed. An application with an IP address string to resolve should use

inet_addr to convert the string to an IP address, then gethostbyaddr to obtain the hostent structure.

 Part 2 - Send / receive

Up to this point we have managed to connect with our client to the server. Clearly this is not going to be enough in a

real-life application. In this section we are going to look into more details how to use the send/recv functions in

order to get some communication going between the two applications. Factually this is not going to be difficult

because most of the hard work has been done setting up the server and the client app. before going into the code we

are going to look into more details the two functions send(SOCKET s, const char FAR * buf, int len, int flags) send

is used on connected datagram or stream sockets and is used to write outgoing data on a socket. For datagram

sockets, care must be taken not to exceed the maximum IP packet size of the underlying subnets, which is given by

the iMaxUdpDg element in the WSAData structure returned by WSAStartup. If the data is too long to pass

atomically through the underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

For sockets of type SOCK_STREAM, as much information as is currently available up to the size of the buffer

supplied is returned. If the socket has been configured for in- line reception of out-of-band data (socket option

SO_OOBINLINE) and out-of-band data is unread, only out-of-band data will be returned. The application may use

the ioctlsocket SIOCATMARK to determine whether any more out-of-band data remains to be read.

 Read unknow size of data from client

Us mentioned earlier in part 2, we are noe going to expand on the way that we receive data. The problem we had

before is that if we did not know the size of data that we where expecting, then the would end up with problems. In

order to fix this here we create a new function that receive a pointer to the client socket, and then read a char at the

time, placing each char into a vector until we find the '\n' character that signifies the end of the message. This

solution is clearly not a robust or industrial way the read data from one socket to an other, because but its a way to

start reading unknown length strings. the function will be called after the accept method

http://www.ijesrt.com/

[Saranya, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [714]

Starting Server:

I update data transaction automatically.

While we are starting Clients the main Login menu display is shown below.

FUNCTIONAL DESCRIPTION

Login User form Getting input for email ID and password from user

if it is valid ID then Displays

if the user is not valid then the form will be

 Transmitting Message and Files between Client and Server.

 The data will be valid until the Server is Valid.

 Everything defined as Object oriented.

 Server has been developed using Server Socket programming in Java.

http://www.ijesrt.com/

[Saranya, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [715]

 Client has been developed using Socket Programming.

 Transmitting data between Client and Server has been developed IP address.

 Usage of Sql Server will not be needed for sending Messages and attachments.

OPERATIONS INVOLVED IN EMAIL SERVER

 Create new instance of server storage vectors

 Create new instance of server GUI to display messages

 Starts the server

 Set up socket to accept connections

 Accept new client

 Update server window details

 Run indefinitely

 Starts up the server in the correct manner

 Extract information for server from files

 Read object from file and add to server vector

 Gets a vector of emails from persistent storage

 Update server message window

 Send all server mail to a file

CONCLUSION

In this paper, we study TCP and UDP for the downlink of a single cell that can maximize the asymptotic decay rate

of the queue-overflow probability as the overflow threshold approaches infinity. Specifically, we focus on the class

of “UDP,” which pick the user for server at each time that has the largest product of the transmission rate multiplied

by the backlog raised to the power. We show that when approaches infinity, the asymptotically achieve the largest

decay rate of the queue-overflow probability. A key step in proving this result is to use a function to derive a simple

lower bound for the minimum cost to overflow under the tcp - server. This technique, which is of independent

interest, circumvents solving the difficult multidimensional calculus- of-variations problem typical in this type of

problem. Finally, using the insight from this result, we design hybrid scheduling algorithms that are both close to

optimal in terms of the asymptotic decay rate of the overflow probability and empirically shown to maintain small

queue-over flow probabilities over Queue-length ranges of practical interest. For future work, we plan to extend the

results to more general network and channel models.

REFERENCES
[1] M. I. Andreica, A. Dragus¸, A.-D. Sambotin, and N. T¸ apus¸, “Towards a (Multi-) User-Centric Stack of

(Multi-) Point-to-(Multi-) Point Communication Services”, in Proc. 5th Worksh. Enhanced Web Serv.

Technol. WEWST, Ayia Napa, Cyprus, 2010, pp. 36–45.

[2] Valentin Stanciu, Mugurel Ionut¸ Andreica, “Design and development of a UDP-Based Connection-

Oriented Multi-Stream One-to-Many Communication Protocol” 2012.

[3] Paul Stalvig, “Introduction to the Stream Control Transmission Protocol (SCTP)” Oct2007

[4] R. Stewart, RFC 4960 “Stream Control Transmission Protocol” September 2007

[5] David A. Hayes, Jason But, Grenville Armitage ”Issues with Network Address Translation for SCTP”

[6] Shwartz and A.Weiss, Large Deviations for Performance Analysis: Queues, Communications, and

Computing. London, U.K.: Chapman & Hall, 1995.

[7] Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 2nd ed. New York: Springer-

Verlag, 1998.

[8] I. Elwalid and D. Mitra, “Effective bandwidth of general Markovian traffic sources and admission control

of high speed networks,” IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 329–343, Jun. 1993.

http://www.ijesrt.com/

[Saranya, 4(8): August, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [716]

AUTHOR BIBLIOGRAPHY

C.Saranya Received B.sc Computer Science degree from

Trinity College for Women, Affiliated to Periyar

University, Namakkal 2012. M.Sc computer Science at

Trinity College for Women, Affiliated to Periyar

University, Namakkal , 2014 & Pursuing my M.Phil (Full

time) at Muthayammal College of Arts & Science ,

Affiliated to Periyar University, Namakkal, India.

L.Gomathi Currently doing Ph.D. She received her BCA

degree from Bharathidasan University, Chitode 2002 and

MCA degree from Bharathidasan University,

Trichirapalli 2005. She has completed her M.Phil at

Periyar University, Salem, 2007. She is having 9 years of

experience in collegiate teaching and she is the Associate

Professor, Department of BCA in Muthayammal College

of Arts and Science, Rasipuram affiliated by Periyar

University, Namakkal, India.

http://www.ijesrt.com/

